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Abstract We investigate the fourth-order generalized
Ginzburg–Landau equation and the nonlinear modes
modulated by PT -symmetric potentials. By means of
Hirota method, we obtained the bilinear form of the
equation and further derived the analytic soliton solu-
tion. Dynamic behaviors of the solitons under the mod-
ulation of near PT -symmetric potentials were studied
by numerical simulation: The nonlinear modes tend to
be unstable when the potential is closer to conventional
PT -symmetric potential, and the amplitude of the non-
linear modes oscillates periodically when the imagi-
nary part of thePT -symmetric potentials is sufficiently
large.Moreover, we obtained newnonlinearmodes that
are different from the above analytic soliton solutions
by numerical excitation and tested their stability. These
new findings of nonlinear modes in the generalized
Ginzburg–Landau model can be potentially applied
to hydrodynamics, optics and matter waves in Bose–
Einstein condensates.
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1 Introduction

Ginzburg–Landau models have attracted the attention
of researchers recently because they are the universal
wave equations that govern many nonlinear phenom-
ena such as hydrodynamics, optics and matter waves
in Bose–Einstein condensates [1–6]. The conventional
Ginzburg–Landau equation (GLE) [7–9]

iut + puxx + q|u|2u = iγ u (1)

is the dissipative extension of the conservative nonlin-
ear Schrödinger equation and has also beenwidely used
in superfluidity, plasmas, liquid crystals, strings in the
field theory, quantum field theory, etc. [10–12]. With
the development of symbolic computation and soliton
theory, various types of soliton solutions of GLE are
analyzed in detail, including multi-peak solitons [13],
exploding solitons [14], two-dimensional vortical soli-
tons [15], lattice solitons [16] and peakons. Although
the higher-order GLEs have been investigated, nonlin-
ear modes of them have rarely been analyzed so far.
Therefore, the main purpose of this paper is to study
the generalization of GLE with fourth-order nonlinear
dispersion by means of analytical and numerical meth-
ods.
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We will investigate the fourth-order generalized
GLE:

iut + α(x)uxx + β(x, t)|u|2u + γ (x, t)u

+ σ(t)uxxxx + ζ(t)uxx |u|2
+ ξ(t)u|u|2xx + ρ(t)u|u|4 + η(t)ux = 0,

(2)

with α = α1 + iα2, β = β1 + iβ2, γ = V + iW ,
σ = σ1+iσ2, ζ = ζ1+iζ2, ξ = ξ1+iξ2, ρ = ρ1+iρ2,
η = iη1, where V , αi (i = 1, 2) are real functions of
x ; η1, σi , ζi , ξi , ρi (i = 1, 2) are real functions of t ;
and W , βi (i = 1, 2) are real functions of x and t . To
indicate the linear gain–loss coefficient, we introduce
the complex potential V + iW [10].

Equation (2) can be applied to describe the prop-
agation of light in an active dispersive medium [17].
In this case, u is the complex envelope of the elec-
tric field, x denotes the propagation distance, and t is
the retarded time. α1 is the group velocity dispersion
coefficient, and α2 describes the spectral filtering or
linear parabolic gain [14]. β1 is the Kerr nonlinearity
coefficient, and β2 accounts for the nonlinear gain–
loss processes [10]. ρ1 is the parameter of the quintic
nonlinearity and represents a higher-order correction
to the nonlinear amplification/absorption, and ρ2 char-
acterizes the saturation of the nonlinear gain and it is a
possible higher-order correction term to the intensity-
dependent refractive index [17]. σ represents the effect
due to discreteness and higher-order magnetic interac-
tions [18]. V is related to the refractive index waveg-
uide, and W characterizes the amplification (gain) or
absorption (loss) of the light beam in the optical mate-
rial [10,19].

There are three special cases of Eq. (2) that should
be mentioned:

(i) When α, β, γ are constants and the other coef-
ficients are zero, Eq. (2) degenerates to Eq. (1). The
stable optical soliton can be obtained by regulating the
group velocity dispersion and nonlinear gain–loss coef-
ficient [20]. Moreover, many kinds of analytical coher-
ent structure solutions to this equation have been stud-
ied [21].

(ii) When α = β = 1, γ (x, t) = V (x)+ iW (x) and
the other coefficients are zero, Eq. (2) can be reduced
to

iut + uxx + [V (x) + iW (x)]u + |u|2u = 0, (3)

in which the beam evolution is governed by the normal-
ized nonlinear Schrödinger-like equation. It can be used
to describe the propagation of the optical soliton in a
self-focusing Kerr nonlinear PT -symmetric potential
[3].

(iii) When α, β are complex constants, γ (x, t) =
V (x) + iW (x) and the other coefficients are zero, Eq.
(2) can be reduced to

iut + (α1 + iα2)uxx + [V (x) + iW (x)]u
+ (β1 + iβ2)|u|2u = 0,

(4)

which can describe the spatial beam transmission in a
cubic-nonlinear optical medium described by the com-
plex Ginzburg–Landau equation with complex poten-
tials. Moreover, the stability of soliton has been ana-
lyzed via numerical simulation [10].

Initiated by Bender and his coworker in 1998 [22–
24], PT symmetry and its applications have become
hot topics in physics research in optical experiments
[25–33]. In recent years, there has been tremendous
interest in investigating one- and multi-dimensional
solitons and their stability in all stripes of optical poten-
tials [3,27,29,34,35]. In the PT -symmetric cases, the
spatial profiles of the refractive index and the gain–
loss are even and odd functions, respectively [3]. Due
to some special purposes or uncontrollable elements,
however, the complex potentials can be asymmetric
in several realistic photonics applications and it has
been proved that waveguides with an asymmetric dis-
tribution in the transverse direction of gain and loss
can have stable modes [36–38]. In addition, stable
solitons in the nonlinear Schrödinger equation with
certain non-PT -symmetric potentials have also been
reported in recent research [4,38–43]. So it is neces-
sary to extend the studies on the formation and dynam-
ics of nonlinear modes in non-PT -symmetric com-
plexpotentials [44,45]. Thenon-PT -symmetric poten-
tials can be bifurcated out from the PT -symmetric
potential by regulating the related potential parame-
ters, which are called the near PT -symmetric poten-
tials [10,35]. Our aim is to investigate Eq. (2) with the
near PT -symmetric potentials and obtain stable non-
linear modes.

In Sect. 2, under some constraints of the constant
and variable coefficients that will be derived, Eq. (2)
will be linearized. Based on the bilinear forms, one-
soliton solutions will be derived. In Sect. 3, we will
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perform numerical simulation of Eq. (2) with nearPT -
symmetric potentials in two cases, corresponding to the
near PT -symmetric Scarf-II and δ-signum potentials,
respectively. Then, we consider excitations of solitons
via making the parameters rely on the propagation dis-
tance t . In Sect. 4, results will be summarized.

2 Analytical soliton solutions of Eq. (2)

To get the bilinear forms of Eq. (2), we will present the
following constraints on the variable coefficients:

α(x)β(x, t)ζ(t) = 6β2(x, t)σ (t)

= 6α(x)β(x, t)ξ(t) = 2α2(x)ρ(t).
(5)

Via the dependent-variable transformation

u(x, t) = g(x, t)

f (x, t)
, (6)

with the real f and complex g, we can derive the bilin-
ear forms of Eq. (2):

i Dt g · f + α(x)D2
x g · f + γ (x, t)g · f

+ σ(t)D4
x g · f + η(t)Dxg · f = 0,

α(x)D2
x f · f − β(x, t)|g|2 = 0.

(7)

Through Hirota bilinear method, we introduce the
bilinear operator D defined as [46]

Dm
x Dn

t a(x, t) · b(x, t)
= ∂m

∂ym
∂n

∂sn
a(x+y, t+s)b(x−y, t−s)

∣
∣
∣
∣
y=0,s=0

,

(8)

where m, n are positive integers, a, b are functions of
x and t , and y stands for the small increment.

Then, we expand g and f in power series of a small
parameter ε as

g = εg1 + ε3g3 + ε5g5 + · · · ,

f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + · · · ,
(9)

where gm(m = 1, 3, 5, · · · ), fn(n = 2, 4, 6, · · · ) are
functions of x and t to be determined.

2.1 The case of constant coefficients

In this section, we assume the coefficients of Eq. (2)
are constant and set

g1 = ek1x+(ω1+iω2)t+θ1 ,

f2 = A1e
2k1x+2ω1t+2θ1 ,

(10)

where k1, A1, ωi (i = 1, 2) are nonzero constants. Let
β1 = c0α1, β2 = c0α2, c0 = 8A1k21, and we can derive
the constraint relation of other parameters:

ω1 = −k21α2 − W − k1η1 − k41σ2,

ω2 = k21α1 + V + k41σ1,

W = −k41σ2 − k21α2.

(11)

Without loss of generality, we set ε = 1. Thus, the
expression of single soliton solution can be written as

u = g1
1 + f2

. (12)

In Fig. 1, the propagation of the soliton along the dis-
tance x is illustrated. The velocity and direction of soli-
tonic propagation phase will be changed if we choose
different values of η1. Moreover, the amplitude of the
soliton is determined by k1.

2.2 The case of various coefficients

Next, wewill consider the situation that the coefficients
of Eq. (2) are functions of x , t and assume

g1 = A1(t) e
k1x+ω1(t)+iω2(t),

f2 = A2(t) e
2k1x+2ω1(t) .

(13)

Then,we separateW (x, t) into twoparts byW (x, t) =
W1(x) + W2(t) and take β1(x, t) = 2c0(t)α1(x),
β2(x, t) = 2c0(t)α2(x).

The expressions of variable coefficients can be
obtained

A1(t) = e
∫ −W2(t)dt ,

A2(t) = A2
1(t)c0(t)

4k21
,

ω1(t) =
∫

−k1(η1(t) + k31σ2(t))dt,
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Fig. 1 Parameters are chosen as: a k1 = 1, α2 = 1, c0 = 1, η1 = 0, θ1 = 0. b and c have two different parameters from a, with k1 = 2,
η1 = 1 in b and k1 = 0.5, η1 = −1 in c

Fig. 2 Parameters are chosen as: k1 = 1, c1 = 1,with a W2(t) = 0.1 sin(2t),η1(t) = sin(t),σ2(t) = sin(t), with bW2(t) = 0.1 sin(2t),
η1(t) = sin(t), with σ2(t) = 0.1 sin(t), with c W2(t) = 0.1 sin(2t), η1(t) = cos(t), σ2(t) = 0.1 sin(t)

Fig. 3 Parameters are chosen as: k1 = 1, c1 = 1, with (a) a = 1, b = 3, c = 0.1, with (b) a = 0.5, b = 5, c = 0.1, with (c) a = 0.5,
b = 3, c = 0.5

ω2(t) =
∫

k41σ1(t)dt,

c0(t) = c1 e
∫

2(W2(t)+k41σ2(t))dt , (14)

where c1, k1 are constants, V (x) = −k21α1(x), and
W1(x) = −k21α2(x).

The analytical solution of Eq. (2) with variable coef-
ficients can be likewise expressed as Eq. (12). In Fig. 2,
we take the variable coefficient η1(t) as sine function.
It is obvious that the soliton solution is periodic and
σ2(t) is related to the amplitude.

When W2(t) = at e−t2 , η1(t) = b e−t2 , σ2(t) =
c e−t2 , it can be seen that a and b have effects on the
amplitude and phase shift of soliton near t = 0, respec-
tively. The amplitude of soliton in t ≥ 0 is directly pro-
portional to c, and the other part is inversely (see Fig.
3).

3 Analysis of numerical solutions

To study the effect of fourth-order nonlinear dispersion
numerically,we consider the generalized casewith con-
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Fig. 4 Parameters are chosen as: α1 = 1, β1 = 1, β2 = 1, σ1 = 0.05, σ2 = 0, W0 = 1, with a α2 = −1, V0 = 1, with b ρ1 = 1,
ρ2 = 1, with c–e α2 = −1, ρ1 = 1, ρ2 = 1, V0 = 1, W1 = 1, with f–h α2 = −1, ρ1 = 1, ρ2 = 1, V0 = 1, W1 = 0.14

stant coefficients and complex potentials

iut + (α1 + iα2)uxx + (β1 + iβ2)|u|2u
+[V (x) + iW (x)]u + (σ1 + iσ2)uxxxx

+(ρ1 + iρ2)u|u|4 = 0, (15)

whereαi ,βi ,σi andρi (i = 1, 2) are all real parameters.
We focus on the stationary solutions of Eq. (15) in the
form:

u(x, t) = φ(x)eiμt , (16)

where μ is a real propagation constant.
Substituting it into Eq. (15), we can obtain the com-

plex localized field-amplitude function φ(x) that satis-

fies the ordinary differential equation:

[

(α1 + iα2)
d2

dx2
+ (β1 + iβ2)|φ|2 + V (x) + iW (x)

+(σ1 + iσ2)
d4

dx4
+ (ρ1 + iρ2)|φ|4

]

φ = μφ.

(17)

In our numerical simulations, spatial differential and
the integration in time are carried out by the modi-
fied squared-operator method and the pseudospectral
method, respectively [47]. In the following, we study
Eq. (15) under the role of the near PT -symmetric
Scarf-II and δ-signum potentials and find the stationary
nonlinear modes of Eq. (15).
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Fig. 5 Parameters are chosen as: Parameters are chosen as: α1 = 1, α2 = −1, β1 = 1, β2 = 1, ρ1 = 1, ρ2 = 1, σ1 = 0.05, σ2 = 0,
W1 = 1, with b–d V0 = 1, W0 = 20, with e–g V0 = 1, W0 = 0.1

3.1 Nonlinear modes with the near PT -symmetric
Scarf-II potential

The PT -symmetric complex potential V (x) + iW (x)
has the features that V (x) = V (−x) and W (−x) =
−W (x) [3]. Because of the appearance of complex
coefficients, Eq. (2) is not PT -symmetric. The near
PT -symmetric potentials are considered [10]. We ini-
tiate our analysis by introducing the following near
PT -symmetric Scarf-II potential

V (x) = V0 sech
2(x),

W (x) = W0 sech(x) tanh(x) − W1 sech
2(x).

(18)
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Fig. 6 Parameters are chosen as: α1 = 1, β1 = 1, β2 = 1,
ρ1 = 1, ρ2 = 1, σ1 = 0.05, V0 = 1, W0 = 1, W1 = 1
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After setting some coefficients, we study the effects
of other variables on the iterative image. The power of
nonlinear mode is defined as P = ∫ +∞

−∞ |φ(x, t)|2dx .
The relationship between ρ1, ρ2, α2, V0, W1 and P is
shown in Fig. 4a and b, in which the horizontal coordi-
nate is W1 ∈ (0, 6). When other parameters are speci-
fied, W1 and P are positively correlated, while ρ1, ρ2
and P are negatively correlated (see Fig. 4a). What’s
more, when α2 is different in two cases, we can make
them have the same power by adjusting W1 (see Fig.
4b).

In addition, when W1 = 0, the near PT -symmetric
potential (18) is just the conventional PT -symmetric
Scarf-II potential. With the value ofW1 decreasing, the
solutionwill be unstable and become attenuation by the
propagation of soliton. Now, we consider the evolution
of soliton solutions via Eq. (16). In our numerical simu-
lations, the 5% initial randomnoise is added to simulate
the wave transmission. With the given parameters, Fig.
4c displays a stable nonlinear mode. If the value ofW1

is decreased, the mode will become unstable. This is
to say a little change in the gain–loss distributions can
make the nonlinear mode unstable when W1 is suffi-
ciently small (see Fig. 4f).

Furthermore, it will get close to PT -symmetric
Scarf-II potential by increasing the value ofW0. In this
case, the relationship between P and W0 is illustrated
in Fig. 5a. If the initial value of W0 = 20W1, then
the amplitude of nonlinear mode is periodically oscil-
lating and it experiences more than 2 periods within
1450 ≤ t ≤ 1500 (see Fig. 5b). This means the growth
ofW0 can also change the stability of soliton with near
PT -symmetric Scarf-II potential.

When other coefficients are fixed, we change W0 to
get different potentials. Let W0 = 0.1, and W approx-
imates an even function of x . Moreover, the soliton is
stable and symmetric approximately (see Fig. 5e and
f). If we further increase W0 to 20, then W is close to
an odd function of x . What’s more, the soliton is stable
and asymmetric (see Fig. 5b and c), which indicates
that we can get stable soliton with near PT -symmetric
Scarf-II potential by increasing the value of W0.

In particular, for some small values of W0, the
soliton in cubic GLE is usually stable with α2 ≤ 0
and β2 ≥ 0, beyond which the soliton immediately
becomes extremely unstable [10]. Sowe investigate the
relationship between P and α2 with the fourth-order
magnetic interactions σ2 (see Fig. 6). When α2 > 0
and σ2 = 0, P of the nonlinear mode changes sud-

denly near t = 0. If we fix σ2 = 0.03, the curve about
P andα2 of nonlinearmodewill become smooth. Thus,
the power of the nonlinear mode can be transformed by
changing σ2.

3.2 Nonlinear modes with the near PT -symmetric
δ-signum potential

Next, we introduce the near PT -symmetric δ-signum
potential

V (x) = 2V0δ(x),

W (x) = W0 sgn(x)e
−V0|x | − W1δ(x),

(19)

to carry on our analysis, which plays a significant role
in such fields as quantum physics, optics and Bose–
Einstein condensates [48,49].

The limit of the following Gaussian function can be
used to express the δ function

δ(x) = lim
a→0+ g(x; a),

g(x; a) = exp(−x2/a2)

a
√

π
,

(20)

and thus, we can use theGaussian function g(x; a)with
very small parameter a to approximate the δ function
[48]. In order to facilitate calculations, without loss of
generality, we choose a = 0.01 in this paper.

As shown in Fig. 7a and b, the horizontal coordinates
are W1 ∈ (0, 6). W1 is directly proportional to P . β2,
ρ1, ρ2 are inversely proportional to P . And when W1

is sufficiently small, the peakon solution is becoming
unstable. Results of these numerical simulations are
given in Fig. 7c and e.

When the horizontal coordinates areW0 ∈ (−5, 20),
Fig. 8a shows the power of peakon solutions. When
W0 = 0, P takes the minimum value. Considering W0

as large as possible, the evolution of peakon is simi-
lar to the case under the near PT -symmetric Scarf-II
potential and it experiences more than 5 periods within
1450 ≤ t ≤ 1500 (see Fig. 8b).

Based on the above results, we consider the effect of
β2 and ρ2. It is easy to show that β2 and ρ2 are inversely
proportional to P . The two stable peakon solutions are
illustrated in Fig. 9c and e. It can be seen that β2 are
related to the morphology of peakons by changing the
width of nonlinear mode.
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Fig. 7 Parameters are
chosen as: α1 = 1,
α2 = −1, β1 = 1,
σ1 = σ2 = 0, V0 = 1,
W0 = 1, with a β2 = 1,
with b ρ1 = 2, with c, d
β2 = 1, ρ1 = 0, ρ2 = 1,
W1 = 1, with e, f β2 = 1,
ρ1 = 0, ρ2 = 1, W1 = 0.77
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3.3 Generalized model and excitations of solitons

In this section, we consider excitations of the above-
mentioned solitons in Eq. (15) via adiabatical change of
system parameters. We restrict our interests in the fol-
lowing nonlinear modes with the near PT -symmetric
potentials (18) (19) and complex coefficients of Eq.
(15)

iut + [α1 + iα2(t)] uxx

+ [β1 + iβ2] |u|2u + [V (x) + iW (x, t)]u
+ [σ1 + iσ2] uxxxx + [ρ1 + iρ2] u|u|4 = 0.

(21)

Inorder tomodulate the systemparameters smoothly,
we consider the following “switch-on” function:

ε(t) =

⎧

⎪⎪⎨

⎪⎪⎩

ε1, t = 0,
1

2
(ε2 − ε1)

[

1 + sin

(
π t

500
− π

2

)]

+ ε1, 0 < t < 500,

ε2, 500 ≤ t ≤ 1500,

(22)
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Fig. 8 Parameters are
chosen as: α1 = 1,
α2 = −1, β1 = 1, β2 = 1,
ρ1 = 2, ρ2 = 3,
σ1 = σ2 = 0, with b, c
V0 = 1, W0 = 20, W1 = 6
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where ε1,2, respectively, represent the real initial-state
and final-state parameters and generate α2(t), W0(t),
W1(t) by ε(t). Under the synchronous modulation of
system parameters, the excitation stage and the propa-
gation stage can be described by Eqs. (21), (22). During
the excitation stage (0 < t < 500), system parameters
change slowly from ε1 to ε2, and the initial state corre-
sponding to ε1 will be adiabatically driven to the new
state corresponding to ε2; during the propagation stage
(500 ≤ t ≤ 1500), system parameters are maintained
at ε2, and the excited nonlinear mode will propagate
in the final system. It should be noted that some sys-
tem parameters can be constants [e.g.,W0(x, t) = ε(t)
= const.], if we set the “switch-on” function ε(t) for
ε1 = ε2 [50].

We first execute a two-parameter excitation of the
soliton with the nearPT -symmetric Scarf-II potential.
Figure 10 shows that the excitation of the nonlinear
mode is stable with a lower amplitude with the change
of W0 and W1, due to both the final state and initial
state are stable.

Because the solutions in Fig. 6 cannot be obtained
directly when α2 ≥ 0, we consider the case in this
section. As can be seen, Fig. 11 shows a stable soliton
solution.

Finally, we consider the near PT -symmetric δ-
signum potential. We execute a single-parameter exci-
tation of the peakon controlled byEq. (21) via the initial
condition determined. In Fig. 12, it can be seen that if
W01 = 1 andW11 = 20, then the morphology of stable
mode will change.

4 Conclusions

In conclusion, we study the dynamic behavior and sta-
bility of nonlinear modes in the fourth-order general-
ized GLE with near PT -symmetric potentials.

Firstly, we get the bilinear form of Eq. (2) by Hirota
method. When the coefficients are constant and vari-
able, analytical solutions and images of solitary wave
solutions are obtained, respectively. In constant coeffi-
cients, the velocity and direction of the solitonic prop-
agation phase will be changed if we choose different
values of η1 (see Fig. 1). In various coefficients, the
intensity of soliton is related to σ2(t) and the soliton
solution is periodic when the variable coefficient η1(t)
is sine function (see Fig. 2).

Secondly, we separately study the model of Eq. (15)
with twonovel categories of nearPT -symmetric Scarf-
II and δ-signum potentials and get several stable soli-
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Fig. 9 Parameters are
chosen as: α1 = 1,
α2 = −1, β1 = 1, ρ1 = 2,
σ1 = σ2 = 0, V0 = 1,
W0 = 1, W1 = 6, with a
ρ2 = 3, with b β2 = 1, with
c, d β2 = −1, ρ2 = 3, with
e, f β2 = 1, ρ2 = 0
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Fig. 10 Parameters are
chosen as: α1 = 1,
α2 = −1, β1 = 1, β2 = 1,
ρ1 = 1, ρ2 = 1, σ1 = 0.05,
σ2 = 0, V0 = 1, W01 = 1,
W02 = 2, W11 = 1,
W12 = 0.14
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Fig. 11 Parameters are
chosen as: α1 = 1, β1 = 1,
β2 = 1, ρ1 = 1, ρ2 = 1,
σ1 = 0.05, σ2 = 0.03,
V0 = 1, W0 = 1, W1 = 1,
α21 = −1, α22 = 0
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Fig. 12 Parameters are
chosen as: α1 = 1,
α2 = −1, β1 = 1, β2 = 1,
ρ1 = 2, ρ2 = 3,
σ1 = σ2 = 0, V0 = 1,
W1 = 6, W01 = 1,
W02 = 20
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ton and peakon solutions. Besides, the relationships
between system coefficients and the power of non-
linear modes are investigated. Roughly speaking, W1

and P are positively correlated, while ρ1, ρ2 and P
are negatively correlated (see Figs. 4a and 7a). When
W0 = 0, the power of nonlinear modes takes the min-
imum value (see Figs. 5a and 8a). In particular, with
the near PT -symmetric Scarf-II potential, if the initial
value of W0 = 20W1, W is close to an odd function of
x and the amplitude of nonlinear mode is periodically
oscillating (see Fig. 5b and d). Let W0 = 0.1, then W
approximates to an even function of x and the soliton is
stable and symmetric approximately (seeFig. 5e andg).
With the nearPT -symmetric δ-signum potential, β2 is
related to the morphology of peakons by changing the
width of nonlinearmode and it is inversely proportional
to the power of the peakon (see Fig. 9).

Finally, we analyze the excitations of nonlinear
modes and get some stable cases that have not been
acquired in the second part. It can be seen that the mor-
phology of the stablemode is changedwhenwe execute

a single-parameter excitation of the peakon (see Figs.
11 and 12).
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